In This Article Case Studies in Industrial Contamination

  • Introduction
  • General Overviews
  • Books and Edited Volumes
  • Challenges in the Study of Industrial Contamination
  • Exposure Assessment
  • Public Health and Environmental Impacts of Toxic Exposure
  • Remediation

Environmental Science Case Studies in Industrial Contamination
Devra L. Davis, Sarina T. Scott
  • LAST MODIFIED: 26 July 2017
  • DOI: 10.1093/obo/9780199363445-0077


Evaluating the public health impact of industrial contamination is one of the most challenging subjects for investigators, as their work typically takes place in the context of intense public scrutiny. Thus, instances such as Love Canal, New York, and Times Beach, Missouri, first came to public attention when media began to report that concerned citizens were questioning whether patterns of illness in their children could be explained by geography. Retrospective analyses of chronic illness are limited by poor ascertainment both of diseases and potential exposures and the lack of systematic efforts to collect relevant information regarding immediate and longer-term environmental conditions. Adding to the analytic difficulty is the fact that clusters of illness cannot easily be differentiated from chance occurrences. While trend analyses of geographic patterns can be instructive, they are best suited to hypothesis-generation and cannot be used as scientific evidence of harm. Further compounding the evaluation of contamination is the fact that the evidentiary burdens of law and science differ in their requirements for statistical tests of information. While public health science asks for evidence that a given finding reaches the .05 probability of being due to chance, law may only require that the association be more likely than not. The materials assembled here make clear that corporate and public health interests have frequently clashed when it comes to evaluating industrial contamination, with the former exerting considerable influence on the latter.

General Overviews

Investigations of industrial contamination take place under the glare of intense public scrutiny. Essentially they must rely on two basic types of evidence: experimental studies under controlled conditions of animals exposed to sufficient doses in their short lifetimes that approximate widely encountered real-life conditions or several types of epidemiological investigations, including, case control studies comparing individuals with specific diseases with those who are otherwise similar but lack that same disease to determine what past conditions or environmental exposures might account for the disease being studied, disease patterns tied with retrospective analyses of reported or estimated exposures in certain areas of a population, and cross-sectional analyses of current patterns of disease in populations contrasting rates of those with higher exposures to those with little or no exposures. Yang 2011 addresses the how detailed information about exposure can be quite difficult to obtain because of a lack of systematic efforts to record such data; confidentiality claims surrounding information on production, transportation, and disposal; and organized public relations efforts to suppress information, as is well-documented in Davis and Webster 2002 and Walker 2017. Given the documented challenges of reconstructing histories of industrial exposures, a number of investigators, including Clapp, et al. 2008 and Yang 2011 have advocated for the validation of molecular biomarkers of exposure, pre-clinical indicators of disease, and predictors of prognosis. Tomatis 2000; Davis and Webster 2002; Clapp, et al. 2008; and Yang 2011 focus on the importance of using the theory of primary prevention and the precautionary principle as a foundation for public health measures to avoid damage.

  • Clapp, Richard W., Molly M. Jacobs, and Edward L. Loechler. 2008. Environmental and occupational causes of cancer: New evidence 2005–2007. Reviews on Environmental Health 23.1: 1–38.

    E-mail Citation »

    This publication reviews current epidemiological evidence of environmental contributions to cancer and acknowledges the multi-factorial nature of occupational and environmental cancers. Included is an argument for the use of molecular biology and toxicology approaches in addition to epidemiology in order to assure harm reduction focusing mainly on active prevention of exposure.

  • Davis, Devra Lee, and Pamela S. Webster. 2002. The social context of science: Cancer and the environment. Annals of the American Academy of Political and Social Science 584.1: 13–34.

    E-mail Citation »

    This overview highlights science as a social institution and the economic and political forces that determine societal responses to cancer. The authors discuss cancer incidence in the context of environmental exposure and the emergence of disease trends. Due to the social complexities surrounding cancer, Davis and Webster argue for population-based efforts to reduce exposures consistent with preserving sustainable development and implementing the precautionary principle.

  • Tomatis, Lorenzo. 2000. The identification of human carcinogens and primary prevention of cancer. Mutation Research/Reviews in Mutation Research 462.2: 407–421.

    E-mail Citation »

    Discussion of primary care prevention by the extensively cited and respected advocate of public health Lorenzo Tomatis. Principal limitations of environmental cancer prevention are noted, and extensive tables displaying known carcinogens and their agents, target organs, and exposures are included. The present article and other works by Tomatis set an important framework for subsequent literature and efforts to predict and prevent disease rather than merely document its occurrence.

  • Walker, Martin. 2017. Corporate ties that bind: An examination of corporate manipulation and vested interest in public health. New York: Skyhorse.

    E-mail Citation »

    Examination of substantial medical evidence indicating irreversible harms to human health caused by corporate-led exposure to toxic chemicals. Industry support of known toxins and widespread denial of deleterious health effects are discussed for a number of industries ranging from pesticides and toxic chemicals to telecommunications, along with the general lack of corporate accountability.

  • Yang, Mihi. 2011. A current global view of environmental and occupational cancers. Journal of Environmental Science and Health, Part C 29.3: 223–249.

    E-mail Citation »

    Brief overview of statistics within and characteristics of environmental and occupational cancers, followed by a discussion of the inconsistency in environmental cancers between developed and developing countries. Consistent with basic public health concepts of preventing damage, Yang calls for primary prevention methods, along with the development of more accurate biomarkers—noting that mixed exposure techniques must be utilized.

back to top

Users without a subscription are not able to see the full content on this page. Please subscribe or login.

How to Subscribe

Oxford Bibliographies Online is available by subscription and perpetual access to institutions. For more information or to contact an Oxford Sales Representative click here.