Rivers
- LAST REVIEWED: 29 September 2014
- LAST MODIFIED: 29 September 2014
- DOI: 10.1093/obo/9780199363445-0004
- LAST REVIEWED: 29 September 2014
- LAST MODIFIED: 29 September 2014
- DOI: 10.1093/obo/9780199363445-0004
Introduction
River networks, and even individual river segments, are complex ecosystems that can be studied from many perspectives. Arguably the most common differentiation is between studies that focus on various aspects of rivers, such as contemporary physical processes (river engineering, hydrology, or geomorphology); physical processes over longer time spans (geomorphology); chemical processes (geology or aqueous chemistry); individual species or groups of organisms (fish biology); and biological communities (aquatic and riparian ecology). Each of these approaches to understanding rivers has an extensive technical literature. The works cited in this bibliographic entry draw from these sometimes disparate bodies of literature and focus on rivers in an environmental context rather than treating a specific river as an isolated feature or focusing solely on one component of rivers. River segments and river networks provide a wealth of information about past and contemporary environmental conditions, for rivers inherently integrate fluxes of matter and energy within a landscape through the entity of a drainage basin. The entire land surface that drains to a specified point makes up the drainage basin for that point. In addition to water, sediment, solutes, and organic matter enter the river network via atmospheric, surface, and subsurface pathways. Matter and energy move upstream, laterally, and vertically within a river network, as well as downstream. A well-studied example comes from the upstream migration of spawning salmon that then die and transfer ocean-derived nutrients to the river network and adjacent riparian zone. Because a river so effectively integrates diverse inputs and reflects conditions across the entire drainage basin, investigators have used physical, chemical, and biological characteristics of rivers as metrics for the environmental state of the river itself, and of the larger drainage basin. Three of the sections within this bibliographic entry include works that provide examples of these metrics for prehistoric, historic, and contemporary environmental conditions. Rivers also provide numerous ecosystem or environmental services, such as clean water and recreational fisheries, and another section provides examples of studies focusing on this aspect of rivers. Attempts to manage rivers and preserve desired attributes such as clean water, flood control, or fisheries constitute an important subset of environmental management, and are addressed in the final section of this entry.
General Overviews
The works cited in this section include all aspects of riverine environments, either written for scientists, as in Calow and Petts 1992, or written for a more popular audience, as in Waters 2000 or Middleton 2012. Patrick 1994–2003 represents a hybrid that is accessible to nonspecialists, but contains useful syntheses and overviews, particularly for students starting to learn about rivers or specialists in one area of river science starting to learn about other aspects of the science. The common theme among these works is that rivers—rather than being simple conduits for water, sediment, or fish—are complex environments that interact with the adjacent uplands, oceans, atmosphere, and underground waters.
Calow, P., and G. E. Petts, eds. 1992. The rivers handbook: Hydrological and ecological principles. 2 vols. Oxford: Blackwell Science.
Volume 1 provides a comprehensive review and synthesis of diverse aspects of river physical, chemical, and biological environments and case studies. Volume 2 reviews perturbations and biological impacts, monitoring, modeling, management options, and case studies. Individual chapters are written by recognized experts, and the organization ensures continuity between chapters.
Middleton, N. 2012. Rivers: A very short introduction. Oxford: Oxford Univ. Press.
DOI: 10.1093/actrade/9780199588671.001.0001
Part of a series of very short introductions to diverse topics. This little volume manages to cover physical, biological, historical, and environmental aspects of rivers very concisely and elegantly. A good starter for anyone interested in learning about rivers as environments.
Patrick, R. 1994–2003. Rivers of the United States. 5 vols. New York: Wiley.
Five volumes published between 1994 and 2003 systematically examine chemical, physical, and biological characteristics of US rivers, including regional emphases. Patrick helped to draft the nation’s Clean Water Act. This synthesis of her life’s work on rivers is readily accessible to nonspecialists and provides an excellent overview of river environments.
Waters, T. F. 2000. Wildstream: A natural history of the free flowing river. St. Paul, MI: Riparian.
Although written for a popular audience, this highly readable book aptly summarizes a variety of relevant technical knowledge about rivers, including physical process and form, water chemistry, biological energy sources and river metabolism, and biological communities. Basic technical information is interspersed with numerous specific case studies, here called “RiverSketches.”
Users without a subscription are not able to see the full content on this page. Please subscribe or login.
How to Subscribe
Oxford Bibliographies Online is available by subscription and perpetual access to institutions. For more information or to contact an Oxford Sales Representative click here.
Article
- Acid Deposition
- Agricultural Land Abandonment
- Agrochemical Pollutants
- Agroforestry Systems
- Agroforestry: The North American Perspective
- Antarctica
- Anthropocene
- Applied Fluvial Ecohydraulic
- Arctic Environments
- Arid Environments
- Arsenic Contamination in South and Southeast Asia
- Beavers as Agents of Landscape Change
- Berry, Wendell
- Burroughs, John
- Bush Encroachment
- Carbon Dynamics
- Carbon Pricing and Emissions Trading
- Carson, Rachel
- Case Studies in Groundwater Contaminant Fate and Transport
- Citizen Science
- Climate Change and Conflict in Northern Africa
- Common Pool Resources
- Community Forest Management
- Contaminant Dispersal in the Environment
- Coral Reefs and Coral Bleaching
- Deforestation in Brazilian Amazonia
- Deltas
- Desert Dust in the Atmosphere
- Determinism, Environmental
- Digital Earth
- Disturbance
- Ecohydrology
- Ecological Integrity
- Economic Valuation Methods for Non-market Goods or Service...
- Economics, Environmental
- Economics of International Environmental Agreements
- Economics of Water Management
- Effects of Land Use
- Endocrine Disruptors
- Endocrinology, Environmental
- Engineering, Environmental
- Environmental Assessment
- Environmental Flows
- Environmental Health
- Environmental Law
- Environmental Sociology
- Erosion
- Ethics, Animal
- Ethics, Environmental
- European Union and Environmental Policy, The
- Extreme Weather and Climate
- Fair Water Distribution: From Theory to Application
- Feedback Dynamics
- Fisheries, Economics of
- Footprints
- Forensics, Environmental
- Forest Transition
- Geodiversity and Geoconservation
- Geography
- Geology, Environmental
- Global Phosphorus Dynamics
- Groundwater
- Hazardous Waste
- Henry David Thoreau
- Historical Changes in European Rivers
- Historical Land Uses and Their Changes in the European Alp...
- Historical Range of Variability
- History, Environmental
- Human Impact on Historical Fluvial Sediment Dynamics in Eu...
- Humid Tropical Environments
- Hydraulic Fracturing
- India and the Environment
- Industrial Contamination, Case Studies in
- Institutions
- Integrated Assessment Models (IAMs) for Climate Change
- International Land Grabbing
- Karst Caves
- Key Figures: North American Environmental Scientist Activi...
- Lakes: A Guide to the Scientific Literature
- Land Use, Land Cover and Land Management Change
- Landscape Architecture and Environmental Planning
- Large Wood in Rivers
- Legacy Effects
- Lidar in Environmental Science, Use of
- Management, Australia's Environment
- Mangroves
- Marine Mining
- Marine Protected Areas
- Mediterranean Environments
- Mountain Environments
- Muir, John
- Multiple Stable States and Regime Shifts
- Murray-Darling Basin Plan: Case Study in Market-Based Appr...
- Natural Fluvial Ecohydraulics
- Nitrogen Cycle, Human Manipulation of the Global
- Non-Renewable Resource Depletion and Use
- Olmsted, Frederick Law
- Payments for Environmental Services
- Pedology
- Periglacial Environments
- Permafrost
- Physics, Environmental
- Psychology, Environmental
- Remote Sensing
- Resilience
- Riparian Zone
- River Pollution
- Rivers
- Rivers and Their Cultural Values: Assessing Cultural Water...
- Rivers, Effects of Dams on
- Rivers, Restoration of Physical Integrity of
- Rulemaking
- Sea Level Rise
- Secondary Forests in Tropical Environments
- Security, Energy
- Security, Environmental
- Security, Water
- Sediment Budgets and Sediment Delivery Ratios in River Sys...
- Sediment Regime and River Morphodynamics
- Semiarid Environments
- Soil Salinization
- Soils as an Environmental System
- Spatial Statistics
- Stream Mitigation Banking
- Sustainable Finance
- Sustainable Forestry, Economics of
- Technological and Hybrid Disasters
- The Key Role of Energy in Economic Growth
- Thresholds and Tipping Points
- Treaties, Environmental
- Tropical Southeast Asia
- Use of GIS in Environmental Science
- Water Availability
- Water Quality in Freshwater Bodies
- Water Quality Metrics
- Water Resources and Climate Change
- Water, Virtual
- Wetlands
- White, Gilbert Fowler
- Wildfire as a Catalyst
- Zone, Critical