Polar Regions
- LAST REVIEWED: 16 August 2022
- LAST MODIFIED: 23 May 2012
- DOI: 10.1093/obo/9780199830060-0060
- LAST REVIEWED: 16 August 2022
- LAST MODIFIED: 23 May 2012
- DOI: 10.1093/obo/9780199830060-0060
Introduction
The polar regions have gained the attention of scientists and the general public alike, especially since explorers first visited these remote and inhospitable places, characterized by the most extreme climatic conditions on Earth, and reported their fascination about them. Scientific research, in the modern sense, however, started little more than one hundred years ago, with Fridtjof Nansen’s seminal Fram expedition to the Arctic Ocean (1893–1896). The early studies that followed the “heroic phase” of the exploration of the polar regions addressed a wide variety of topics, ranging from broad landscape descriptions to very detailed analyses of individual species, adaptations, or metabolic pathways. Much work was done on ecological aspects of the polar environments and their differentiation into geographical and biotic regions. The exploitation of the surprisingly great wealth of natural resources the polar regions house, such as the rich whale populations and, later, the abundant Antarctic krill in the Southern Ocean, were an important driving force behind many ecological investigations. In the recent past, the study of the impacts of climate change, which are particularly severe in both polar regions, came increasingly into focus of researchers. Scientific fieldwork in polar regions is difficult and costly, and since the early days, ecological research has largely been conducted within the framework of multidisciplinary, often international projects. Over the last three decades, international cooperation in polar research has greatly increased, most often under the wings of the Scientific Committee on Antarctic Research (SCAR) and the International Arctic Science Committee (IASC).
General Overviews
The scientific communities dealing with research in marine and terrestrial/freshwater habitats are largely separate, due to the great differences between ocean and land in terms of ecological structure and methods to be applied in their scientific investigation. Not surprisingly, there are thus only a few comprehensive works that address the whole range of ecological habitats in both the Arctic and Antarctic. The most recent one is Thomas, et al. 2008, a textbook on the biology of polar regions. The often-cited Arctic Monitoring and Assessment Programme 1998 is a report that summarizes the knowledge on the pollution of the Northern latitudes. The impacts of climate change in polar regions have been comprehensively treated in two recently published reports: for the Arctic in Hassol 2004, and for the Antarctic in Turner, et al. 2009.
Arctic Monitoring and Assessment Programme. 1998. AMAP Assessment report: Arctic pollution issues. Oslo, Norway: Arctic Monitoring and Assessment Programme.
The most comprehensive book on all affairs on pollution in Arctic regions, with respect to the environment in general, as well as plants, animals, and humans.
Hassol, Susan Joy. 2004. Impacts of a warming Arctic. Cambridge, UK: Cambridge Univ. Press.
The first and still most comprehensive account. A 140–page synthesis report of the Arctic Climate Impact Assessment, describing the possible future consequences the pronounced climate change in the Arctic will have on the environment and its living resources, on human health, and on buildings, roads, and other infrastructure.
Thomas, D. N., G. E. Fogg, P. Convey, et al. 2008. The biology of polar regions. Oxford: Oxford Univ. Press.
DOI: 10.1093/acprof:oso/9780199298112.001.0001
The most recent comprehensive book on the different polar marine, freshwater, and terrestrial habitats in both the Northern and Southern Hemispheres.
Turner, John, Robert A. Bindschadler, Pete Convey, et al., eds. 2009. Antarctic climate change and the environment: A contribution to the International Polar Year 2007–2008. Cambridge, UK: Scientific Committee on Antarctic Research.
This major report, published by the Scientific Committee on Antarctic Research (SCAR), synthesizes the present knowledge on the past and possible future changes in the physical environment of Antarctica and the Southern Ocean, and their impact on the biota.
Users without a subscription are not able to see the full content on this page. Please subscribe or login.
How to Subscribe
Oxford Bibliographies Online is available by subscription and perpetual access to institutions. For more information or to contact an Oxford Sales Representative click here.
Article
- Accounting for Ecological Capital
- Adaptive Radiation
- Agroecology
- Allelopathy
- Allocation of Reproductive Resources in Plants
- Animals, Functional Morphology of
- Animals, Reproductive Allocation in
- Animals, Thermoregulation in
- Antarctic Environments and Ecology
- Anthropocentrism
- Applied Ecology
- Approaches and Issues in Historical Ecology
- Aquatic Conservation
- Aquatic Nutrient Cycling
- Archaea, Ecology of
- Assembly Models
- Autecology
- Bacterial Diversity in Freshwater
- Benthic Ecology
- Biodiversity and Ecosystem Functioning
- Biodiversity, Dimensionality of
- Biodiversity, Marine
- Biodiversity Patterns in Agricultural Systms
- Biofuels
- Biogeochemistry
- Biological Chaos and Complex Dynamics
- Biological Rhythms
- Biome, Alpine
- Biome, Boreal
- Biome, Desert
- Biome, Grassland
- Biome, Savanna
- Biome, Tundra
- Biomes, African
- Biomes, East Asian
- Biomes, Mountain
- Biomes, North American
- Biomes, South Asian
- Biophilia
- Braun, E. Lucy
- Bryophyte Ecology
- Butterfly Ecology
- Carson, Rachel
- Chemical Ecology
- Classification Analysis
- Coastal Dune Habitats
- Coevolution
- Communicating Ecology
- Communities and Ecosystems, Indirect Effects in
- Communities, Top-Down and Bottom-Up Regulation of
- Community Concept, The
- Community Ecology
- Community Genetics
- Community Phenology
- Competition and Coexistence in Animal Communities
- Competition in Plant Communities
- Complexity Theory
- Conservation Biology
- Conservation Genetics
- Coral Reefs
- Darwin, Charles
- Dead Wood in Forest Ecosystems
- Decomposition
- De-Glaciation, Ecology of
- Dendroecology
- Disease Ecology
- Dispersal
- Drought as a Disturbance in Forests
- Early Explorers, The
- Earth’s Climate, The
- Eco-Evolutionary Dynamics
- Ecological Dynamics in Fragmented Landscapes
- Ecological Education
- Ecological Engineering
- Ecological Forecasting
- Ecological Informatics
- Ecological Relevance of Speciation
- Ecology, Introductory Sources in
- Ecology, Microbial (Community)
- Ecology of Emerging Zoonotic Viruses
- Ecology of the Atlantic Forest
- Ecology, Stochastic Processes in
- Ecosystem Ecology
- Ecosystem Engineers
- Ecosystem Multifunctionality
- Ecosystem Services
- Ecosystem Services, Conservation of
- Ecotourism
- Elton, Charles
- Endophytes, Fungal
- Energy Flow
- Environmental Anthropology
- Environmental Justice
- Environments, Extreme
- Ethics, Ecological
- European Natural History Tradition
- Evolutionarily Stable Strategies
- Facilitation and the Organization of Communities
- Fern and Lycophyte Ecology
- Fire Ecology
- Fishes, Climate Change Effects on
- Flood Ecology
- Food Webs
- Foraging Behavior, Implications of
- Foraging, Optimal
- Forests, Temperate Coniferous
- Forests, Temperate Deciduous
- Freshwater Invertebrate Ecology
- Genetic Considerations in Plant Ecological Restoration
- Genomics, Ecological
- Geoecology
- Geographic Range
- Gleason, Henry
- Grazer Ecology
- Greig-Smith, Peter
- Gymnosperm Ecology
- Habitat Selection
- Harper, John L.
- Harvesting Alternative Water Resources (US West)
- Heavy Metal Tolerance
- Heterogeneity
- Himalaya, Ecology of the
- Host-Parasitoid Interactions
- Human Ecology
- Human Ecology of the Andes
- Human-Wildlife Conflict and Coexistence
- Hutchinson, G. Evelyn
- Indigenous Ecologies
- Industrial Ecology
- Insect Ecology, Terrestrial
- Invasive Species
- Island Biogeography Theory
- Island Biology
- Keystone Species
- Kin Selection
- Landscape Dynamics
- Landscape Ecology
- Laws, Ecological
- Legume-Rhizobium Symbiosis, The
- Leopold, Aldo
- Lichen Ecology
- Life History
- Limnology
- Literature, Ecology and
- MacArthur, Robert H.
- Mangrove Zone Ecology
- Marine Fisheries Management
- Marine Subsidies
- Mass Effects
- Mathematical Ecology
- Mating Systems
- Maximum Sustainable Yield
- Metabolic Scaling Theory
- Metacommunity Dynamics
- Metapopulations and Spatial Population Processes
- Microclimate Ecology
- Mimicry
- Movement Ecology, Modeling and Data Analysis in
- Multiple Stable States and Catastrophic Shifts in Ecosyste...
- Mutualisms and Symbioses
- Mycorrhizal Ecology
- Natural History Tradition, The
- Networks, Ecological
- Niche Versus Neutral Models of Community Organization
- Niches
- Nutrient Foraging in Plants
- Ocean Sprawl
- Oceanography, Microbial
- Odum, Eugene and Howard
- Old Fields
- Ordination Analysis
- Organic Agriculture, Ecology of
- Paleoecology
- Paleolimnology
- Parental Care, Evolution of
- Pastures and Pastoralism
- Patch Dynamics
- Patrick, Ruth
- Peatlands
- Phenotypic Plasticity
- Phenotypic Selection
- Philosophy, Ecological
- Phylogenetics and Comparative Methods
- Physics, Ecology and
- Physiological Ecology of Nutrient Acquisition in Animals
- Physiological Ecology of Photosynthesis
- Physiological Ecology of Water Balance in Terrestrial Anim...
- Physiological Ecology of Water Balance in Terrestrial Plan...
- Plant Blindness
- Plant Disease Epidemiology
- Plant Ecological Responses to Extreme Climatic Events
- Plant-Insect Interactions
- Polar Regions
- Pollination Ecology
- Population Dynamics, Density-Dependence and Single-Species
- Population Dynamics, Methods in
- Population Ecology, Animal
- Population Ecology, Plant
- Population Fluctuations and Cycles
- Population Genetics
- Population Viability Analysis
- Populations and Communities, Dynamics of Age- and Stage-St...
- Predation and Community Organization
- Predation, Sublethal
- Predator-Prey Interactions
- Radioecology
- Reductionism Versus Holism
- Religion and Ecology
- Remote Sensing
- Restoration Ecology
- Rewilding
- Ricketts, Edward Flanders Robb
- Sclerochronology
- Secondary Production
- Seed Ecology
- Senescence
- Serpentine Soils
- Shelford, Victor
- Simulation Modeling
- Socioecology
- Soil Biogeochemistry
- Soil Ecology
- Spatial Pattern Analysis
- Spatial Patterns of Species Biodiversity in Terrestrial En...
- Spatial Scale and Biodiversity
- Species Distribution Modeling
- Species Extinctions
- Species Responses to Climate Change
- Species-Area Relationships
- Stability and Ecosystem Resilience, A Below-Ground Perspec...
- Stoichiometry, Ecological
- Stream Ecology
- Succession
- Sustainable Development
- Systematic Conservation Planning
- Systems Ecology
- Tansley, Sir Arthur
- Terrestrial Nitrogen Cycle
- Terrestrial Resource Limitation
- Territoriality
- Theory and Practice of Biological Control
- Thermal Ecology of Animals
- Tragedy of the Commons
- Transient Dynamics
- Trophic Levels
- Tropical Humid Forest Biome
- Urban Ecology
- Urban Forest Ecology
- Vegetation Classification
- Vegetation Dynamics, Remote Sensing of
- Vegetation Mapping
- Vicariance Biogeography
- Weed Ecology
- Wetland Ecology
- Whittaker, Robert H.
- Wildlife Ecology