Genetic Considerations in Plant Ecological Restoration
- LAST REVIEWED: 30 October 2019
- LAST MODIFIED: 30 October 2019
- DOI: 10.1093/obo/9780199830060-0076
- LAST REVIEWED: 30 October 2019
- LAST MODIFIED: 30 October 2019
- DOI: 10.1093/obo/9780199830060-0076
Introduction
Ecological restoration is most commonly described as the process of aiding in the recovery of a damaged or destroyed system. In many cases, restoration may not be possible when self-sustaining populations, functions, and trajectories cannot be maintained due to the type of disturbance sustained by a site; in these cases, revegetation or remediation are more achievable goals. The definition of ecological restoration has been expanded to incorporate scientific inquiry into the process of the recovery of a natural range of ecosystem composition, structure, and dynamics. Ecological restoration research spans different levels of organization from genes to ecosystems. Genetic considerations are fundamental to the success of ecological restoration, and considerations of this issue will impact choices from seed source selection to genetic control of ecosystem services. A major decision for restorationists is the use of local versus nonlocal plant material, as well as the mixing of source populations; ideally, these choices can be based on sound population genetic, ecological, and evolutionary theory research. Ultimately, selection of plant material to be used in ecological restoration is driven by the specific project goals, availability and quality of plant materials, site conditions, and scale of the project. Beyond the local versus nonlocal selection issue, genetic issues related to small population dynamics, gene flow in the modern landscape, and gene expression affecting community structure and ecosystem functions can affect the success of ecological restoration activities. This article focuses primarily on plants; however, issues related to genetics of small populations (inbreeding and outbreeding depression, founder effects, and fitness consequences of reduced genetic variation) are important considerations for animal species too. The readings contained within this bibliography include: Ecotypic Variation, Seed Provenance for Restoration, Seed Transfer Zones for Restoration, Seed Provenance for Revegetation, Life History Traits, Moving beyond Neutral Markers, Inbreeding Depression, Outbreeding Depression, Founder Effects, Fitness Consequences of Reduced Genetic Variation, Community and Landscape Genetics, Testing Genotypic Effects on Community and Ecosystem Processes, Evaluating Success, and Genetic Composition and Diversity in Restored Populations.
General Overviews
Genetic considerations for plant ecological restoration link individual genotypic performance to ecosystem function. For those interested in this topic, numerous general resources provide a foundation for understanding how genetic considerations interact with plant materials selection. Foundations of Ecological Restoration (Falk, et al. 2006), published by Island Press in cooperation with the Society for Ecological Restoration International (SER), provides sixteen chapters written by international experts and is organized into three broad sections (ecological theory and the restoration of populations and communities, restoring ecological function, and restoration ecology in context). Included in this essential text is a chapter on population and ecological genetics in restoration ecology that is an updated and expanded version of an earlier introduction to restoration genetics, Falk, et al. 2001. A second edition, Palmer, et al. 2016 updates and expands the advances in the field of restoration ecology. Introduction to Conservation Genetics (Frankham, et al. 2010) provides a sound foundation in population genetics with real-world case studies. In addition, Introduction to Conservation Genetics (Frankham, et al. 2010) provides a thorough foundation in population genetic with real-world case studies. The seminal work of Falk and Holsinger 1991 articulates population biology and genetics concerns for small plant populations as well as provides strategies for sampling and conservation genetic variation. Bowles and Whelan 1994 includes chapters on genetic considerations, life-history traits, and species interactions when restoring endangered plant and animal species. While the case studies are primarily from the Great Plains and western North America, Rogers and Montalvo 2004 considers genetic diversity and genetic integrity essential components of source material selection for restoration using native plant species. Guerrant, et al. 2004 demonstrates the value of ex situ facilities (i.e., botanical gardens and seed banks) to species conservation and restoration. Of particular interest to genetic considerations for ecological restoration are the two chapters on population genetic issues and quantitative genetics. The Center for Plant Conservation is a network of fifty-seven leading botanical institutions whose primary mission is to conserve and restore imperiled native plants of the United States. This organization coordinates a national ex situ rare plant material conservation program that ensures that material is available for restoration and recovery efforts, technical assistance, and educational and advocacy support through the network, national office, and online resources. Although focused on rare plant species, Maschinski and Albrecht 2017 provides a succinct overview from the Center for Plant Conservation of best practice guidelines for reintroduction that are applicable for any plant restoration project.
Bowles, Marlin L., and Christopher J. Whelan, eds. 1994. Restoration of endangered species: Conceptual issues, planning and implementation. New York: Cambridge Univ. Press.
A collection and expansion of papers from a Symposium on Recovery and Restoration of Endangered Plants and Animals organized for the Second Annual Conference of the Society for Ecological Restoration held in Chicago, Illinois, 1990. This book includes influential chapters on plant population genetics (Fenster and Dudash), reproductive biology and life history traits (Weller), and plant-insect interactions (Louda).
Center for Plant Conservation.
The Center for Plant Conservation (CPC) online resource provides links to fifty-seven leading partner botanical institutions, searchable taxon links, a conservation directory, and resources. “Plant Links” provides access to online databases, organizations (state to international), native plant societies, and natural heritage programs. “Conservation Directory” is searchable by state, expertise, and name.
Falk, Donald A., and Kent E. Holsinger, eds. 1991. Genetics and conservation of rare plants. Oxford: Oxford Univ. Press.
Seminal work in plant conservation genetics because of its thoughtful coverage of a wide range of issues related to rare plant biology and conservation. The book, which, according to its preface, grew from papers originally presented at a Conference on the Genetics and Conservation of Rare Plants coordinated by the Center for Plant Conservation and held at the Missouri Botanical Garden in St. Louis in March 1989, is organized into five sections, is well written, and very approachable for graduate students as well as professional scientists.
Falk, Donald A., Eric E. Knapp, and Edgar O. Guerrant. 2001. An introduction to restoration genetics. Washington, DC: Society for Ecological Restoration.
Useful for practitioners with limited population genetics training, discusses authenticity (accuracy) restoration versus restoring a functional population/community, complexities of source material selection (space for genotype substitution, 1,000-foot elevation bands or 100 miles lateral distance), and offers a helpful section on sampling the diversity of source populations.
Falk, Donald A., Margaret A. Palmer, and Joy B. Zedler, eds. 2006. Foundations of restoration ecology. Washington, DC: Island Press.
Essential resource for ecological restoration researchers and practitioners. Chapter 5, “Population and Ecological Genetics in Restoration Ecology” (pp. 123–152), provides a succinct and well-written review of genetic considerations for restoring plant populations.
Frankham, Richard, Jonathan D. Ballou, and David A. Briscoe. 2010. Introduction to conservation genetics. 2d ed. Cambridge, UK: Cambridge Univ. Press.
The book illustrates topics such as evolutionary genetics, loss of diversity, inbreeding, population fragmentation, taxonomic uncertainties, the genetic management of threatened species, and molecular genetics with real-world examples. Reference to statistical genetic packages is helpful for early carrier restoration professionals. Written for advanced undergraduates and graduate students.
Guerrant, Edward O., Kayri Havens, and Mike Mauder, eds. 2004. Ex situ plant conservation: Supporting species survival in the wild. Science and Practice of Ecological Restoration. Washington, DC: Island Press.
Ex situ conservation has a vital role in conservation programs throughout the world. Ethical and philosophical concerns of ex situ programs, common horticultural practices, genetic considerations for sampling, seed storage, and management of collections are addressed in this edited book.
Maschinski, Joyce, and Matthew A. Albrecht. 2017. Center for Plant Conservations’s best practice guidelines for the reintroduction of rare plants. Plant Diversity 39.6: 390–395.
DOI: 10.1016/j.pld.2017.09.006
Short review of the best management practices for plant reintroductions, advocating for genetic considerations based on empirical data, developing a meaningful monitoring, and conducting reintroductions as experiments.
Palmer, Margaret A., Joy B. Zedler, and Donald A. Falk, eds. 2016. Foundations of restoration ecology. 2d ed. Washington, DC: Island Press.
This second edition incorporates advanced work in the field of restoration ecology, expands the scope of the topics covered, and provides examples of how theory informs on-the-ground restoration efforts.
Rogers, Deborah L., and Arlee M. Montalvo. 2004. Genetically appropriate choices for plant materials to maintain biological diversity. Report to the USDA Forest Service, Rocky Mountain Region. Lakewood, CO: Univ. of California.
This extensively referenced document is organized from genetic principles to specific decisions to case studies. The first several chapters address why genetic diversity and genetic integrity are important to native plant species, the relationship between genetics and ecology, and genetic selection of plant materials followed by case studies. The authors also provide a process for aiding decisions about seed sourcing.
Users without a subscription are not able to see the full content on this page. Please subscribe or login.
How to Subscribe
Oxford Bibliographies Online is available by subscription and perpetual access to institutions. For more information or to contact an Oxford Sales Representative click here.
Article
- Abundance/Biomass Comparison Method
- Accounting for Ecological Capital
- Adaptive Radiation
- Agroecology
- Allelopathy
- Allocation of Reproductive Resources in Plants
- Animals, Functional Morphology of
- Animals, Reproductive Allocation in
- Animals, Thermoregulation in
- Antarctic Environments and Ecology
- Anthropocentrism
- Applied Ecology
- Approaches and Issues in Historical Ecology
- Aquatic Conservation
- Aquatic Nutrient Cycling
- Archaea, Ecology of
- Assembly Models
- Autecology
- Bacterial Diversity in Freshwater
- Benthic Ecology
- Biodiversity and Ecosystem Functioning
- Biodiversity, Dimensionality of
- Biodiversity, Marine
- Biodiversity Patterns in Agricultural Systms
- Biofuels
- Biogeochemistry
- Biological Chaos and Complex Dynamics
- Biological Rhythms
- Biome, Alpine
- Biome, Boreal
- Biome, Desert
- Biome, Grassland
- Biome, Savanna
- Biome, Tundra
- Biomes, African
- Biomes, East Asian
- Biomes, Mountain
- Biomes, North American
- Biomes, South Asian
- Biophilia
- Braun, E. Lucy
- Bryophyte Ecology
- Buell-Small Succession Study (New Jersey)
- Butterfly Ecology
- Carson, Rachel
- Chemical Ecology
- Classification Analysis
- Coastal Dune Habitats
- Coevolution
- Communicating Ecology
- Communities and Ecosystems, Indirect Effects in
- Communities, Top-Down and Bottom-Up Regulation of
- Community Concept, The
- Community Ecology
- Community Genetics
- Community Phenology
- Competition and Coexistence in Animal Communities
- Competition in Plant Communities
- Complexity Theory
- Conservation Biology
- Conservation Genetics
- Coral Reefs
- Darwin, Charles
- Dead Wood in Forest Ecosystems
- Decomposition
- De-Glaciation, Ecology of
- Dendroecology
- Disease Ecology
- Dispersal
- Drought as a Disturbance in Forests
- Early Explorers, The
- Earth’s Climate, The
- Eco-Evolutionary Dynamics
- Ecological Dynamics in Fragmented Landscapes
- Ecological Education
- Ecological Engineering
- Ecological Forecasting
- Ecological Informatics
- Ecological Relevance of Speciation
- Ecology, Introductory Sources in
- Ecology, Microbial (Community)
- Ecology of Emerging Zoonotic Viruses
- Ecology of the Atlantic Forest
- Ecology, Stochastic Processes in
- Ecosystem Ecology
- Ecosystem Engineers
- Ecosystem Multifunctionality
- Ecosystem Services
- Ecosystem Services, Conservation of
- Ecotourism
- Elton, Charles
- Endophytes, Fungal
- Energy Flow
- Environmental Anthropology
- Environmental Justice
- Environments, Extreme
- Ethics, Ecological
- European Natural History Tradition
- Evolutionarily Stable Strategies
- Facilitation and the Organization of Communities
- Fern and Lycophyte Ecology
- Fire Ecology
- Fishes, Climate Change Effects on
- Flood Ecology
- Food Webs
- Foraging Behavior, Implications of
- Foraging, Optimal
- Forests, Temperate Coniferous
- Forests, Temperate Deciduous
- Freshwater Invertebrate Ecology
- Genetic Considerations in Plant Ecological Restoration
- Genomics, Ecological
- Geoecology
- Geographic Range
- Gleason, Henry
- Grazer Ecology
- Greig-Smith, Peter
- Gymnosperm Ecology
- Habitat Selection
- Harper, John L.
- Harvesting Alternative Water Resources (US West)
- Heavy Metal Tolerance
- Heterogeneity
- Himalaya, Ecology of the
- Host-Parasitoid Interactions
- Human Ecology
- Human Ecology of the Andes
- Human-Wildlife Conflict and Coexistence
- Hutchinson, G. Evelyn
- Indigenous Ecologies
- Industrial Ecology
- Insect Ecology, Terrestrial
- Invasive Species
- Island Biogeography Theory
- Island Biology
- Keystone Species
- Kin Selection
- Landscape Dynamics
- Landscape Ecology
- Laws, Ecological
- Legume-Rhizobium Symbiosis, The
- Leopold, Aldo
- Lichen Ecology
- Life History
- Limnology
- Literature, Ecology and
- MacArthur, Robert H.
- Mangrove Zone Ecology
- Marine Fisheries Management
- Marine Subsidies
- Mass Effects
- Mathematical Ecology
- Mating Systems
- Maximum Sustainable Yield
- Metabolic Scaling Theory
- Metacommunity Dynamics
- Metapopulations and Spatial Population Processes
- Microclimate Ecology
- Mimicry
- Movement Ecology, Modeling and Data Analysis in
- Multiple Stable States and Catastrophic Shifts in Ecosyste...
- Mutualisms and Symbioses
- Mycorrhizal Ecology
- Natural History Tradition, The
- Networks, Ecological
- Niche Versus Neutral Models of Community Organization
- Niches
- Nutrient Foraging in Plants
- Ocean Sprawl
- Oceanography, Microbial
- Odum, Eugene and Howard
- Old Fields
- Ordination Analysis
- Organic Agriculture, Ecology of
- Paleoecology
- Paleolimnology
- Parental Care, Evolution of
- Pastures and Pastoralism
- Patch Dynamics
- Patrick, Ruth
- Peatlands
- Phenotypic Plasticity
- Phenotypic Selection
- Philosophy, Ecological
- Phylogenetics and Comparative Methods
- Physics, Ecology and
- Physiological Ecology of Nutrient Acquisition in Animals
- Physiological Ecology of Photosynthesis
- Physiological Ecology of Water Balance in Terrestrial Anim...
- Physiological Ecology of Water Balance in Terrestrial Plan...
- Plant Blindness
- Plant Disease Epidemiology
- Plant Ecological Responses to Extreme Climatic Events
- Plant-Insect Interactions
- Polar Regions
- Pollination Ecology
- Population Dynamics, Density-Dependence and Single-Species
- Population Dynamics, Methods in
- Population Ecology, Animal
- Population Ecology, Plant
- Population Fluctuations and Cycles
- Population Genetics
- Population Viability Analysis
- Populations and Communities, Dynamics of Age- and Stage-St...
- Predation and Community Organization
- Predation, Sublethal
- Predator-Prey Interactions
- Radioecology
- Reductionism Versus Holism
- Religion and Ecology
- Remote Sensing
- Restoration Ecology
- Rewilding
- Ricketts, Edward Flanders Robb
- Sclerochronology
- Secondary Production
- Seed Ecology
- Senescence
- Serpentine Soils
- Shelford, Victor
- Simulation Modeling
- Socioecology
- Soil Biogeochemistry
- Soil Ecology
- Spatial Pattern Analysis
- Spatial Patterns of Species Biodiversity in Terrestrial En...
- Spatial Scale and Biodiversity
- Species Distribution Modeling
- Species Extinctions
- Species Responses to Climate Change
- Species-Area Relationships
- Stability and Ecosystem Resilience, A Below-Ground Perspec...
- Stoichiometry, Ecological
- Stream Ecology
- Succession
- Sustainable Development
- Systematic Conservation Planning
- Systems Ecology
- Tansley, Sir Arthur
- Terrestrial Nitrogen Cycle
- Terrestrial Resource Limitation
- Territoriality
- Theory and Practice of Biological Control
- Thermal Ecology of Animals
- Tragedy of the Commons
- Transient Dynamics
- Trophic Levels
- Tropical Humid Forest Biome
- Urban Ecology
- Urban Forest Ecology
- Vegetation Classification
- Vegetation Dynamics, Remote Sensing of
- Vegetation Mapping
- Vicariance Biogeography
- Weed Ecology
- Wetland Ecology
- Whittaker, Robert H.
- Wildlife Ecology