In This Article Expand or collapse the "in this article" section Agroecology

  • Introduction
  • General Reference Works
  • Journals
  • Long-Term Study Systems
  • Traditional and Scientific Knowledge and Management
  • Social and Cultural Aspects of Agroecology
  • Soil and Nutrient Management
  • Water Management
  • Pest and Disease Management
  • Crop Management, Yield, and Risk
  • Crop Evolutionary Ecology
  • Biotechnology
  • Human and Nonhuman Energy
  • Food and Nutrition Ecology
  • Agroecosystems’ Ecosystem Services and Degradation
  • Climate Change
  • Organic, Local, and Sustainable Agriculture
  • Global Food Crisis Solutions

Ecology Agroecology
David A. Cleveland, Christopher Bacon
  • LAST REVIEWED: 05 October 2021
  • LAST MODIFIED: 26 August 2013
  • DOI: 10.1093/obo/9780199830060-0117


In this article, “agroecology” is defined as a comprehensive perspective of agrifood systems including the relationships between the biophysical and sociocultural components and between agrifood systems and the larger biophysical and sociocultural context in which they are embedded. As such, agroecology includes the internal ecology of agroecosystems, their social and cultural components including nutrition and food sovereignty, crop genotype-by-environment interactions including those of transgenic crop varieties, and the positive (ecosystem services) and negative (ecosystems degradation) effects of agroecosystems on the larger environment, especially climate. This is a broad view of agroecology that does not limit the term to the traditional discipline of ecology applied to agricultural production systems. Although “agroecology” is often used to refer to a comprehensive scientific study of agrifood systems in general, it is also commonly used to refer to a perspective and related practice defined as an alternative to the mainstream industrial agriculture in terms of its underlying values and empirical assumptions—that is, as part of the sustainability revolution. Mainstream agriculture focuses on production efficiency in physical and economic terms—that is, output as quantity of harvested crop per unit of input such as land, labor, or nutrients or, in monetary terms, as revenue per unit of investment—and externalizes many negative effects. Agroecology defines efficiency much more broadly. Outputs include not only edible harvest, but also positive contributions to agroecosystem function such as soil structure, nutritional quality, and economic equity. Inputs include factors not part of production costs, such as sunlight, soil, and microbiota. In addition, agroecology attempts to internalize many factors commonly externalized by mainstream agriculture, including costs such as greenhouse gas emissions, water pollutants, malnutrition, and benefits such as biodiversity and other ecosystem services, as well as social benefits such as nutritional status and farmer and farmworker welfare. Thanks to Daniela Soleri, the editors, and two anonymous reviewers for helpful comments on this article.

General Reference Works

The foundations for a distinct type of agrifood system as an explicit reaction to the growing dominance of industrial systems was established by researchers such as Howard 1976 (cited under Soil and Nutrient Management) in the United Kingdom, Robert Rodale in the United States, Rudolf Steiner in Germany, and Hernández Xolocotzi 1985 in Mexico (cited under Traditional and Scientific Knowledge and Management). “Agroecology” as the term for a distinct field of research and practice seems to have appeared in the 1970s with Cox and Atkins 1979, the first major text in English. Wezel, et al. 2009 reviews the evolution of the term “agroecology,” noting that it was first used in 1928. Altieri 1995 is an introductory overview of agroecology that has been very influential. An introductory text suitable for beginning undergraduates is Gliessman 2007. Vandermeer 2009 is a more advanced text, written by an ecologist, and includes an extensive explanation of the basis of agroecology in ecology. Francis, et al. 2003 expanded the definition of “agroecology” beyond production sciences, in line with the definition used in this article. In contrast, a major English-language text dealing with the ecology of agriculture (and critical of agroecology as defined here) from a mainstream perspective is Connor, et al. 2011. See also Méndez, et al. 2013.

  • Altieri, M. A., J. G. Farrell, et al. 1995. Agroecology: The science of sustainable agriculture. 2d ed. Boulder, CO: Westview.

    This book is a foundational introduction to agroecology, critiquing industrial agriculture and calling for an agroecology based on the principles of natural systems. First published in 1987.

  • Connor, D. J., R. S. Loomis, and K. G. Cassman. 2011. Crop ecology: Productivity and management in agricultural systems. 2d ed. Cambridge, UK: Cambridge Univ. Press.

    DOI: 10.1017/CBO9780511974199

    This book is a prime example of the mainstream agronomic approach to agroecology, which emphasizes crop ecology in industrial systems, with production as the primary goal; it sees industrial agriculture as superior to less input-intensive systems. First published in 1992.

  • Cox, G. W., and M. D. Atkins. 1979. Agricultural ecology: An analysis of world food production systems. San Francisco: Freeman.

    Out-of-print classic that integrates all aspects of agroecology according to the definition used in this article.

  • Francis, C., G. Lieblein, S. Gliessman, et al. 2003. Agroecology: The ecology of food systems. Journal of Sustainable Agriculture 22.3: 99–118.

    DOI: 10.1300/J064v22n03_10

    Expands the definition of agroecology to include humanities, social sciences, economics, environmental sciences, and ethics. Includes a history of the concept and its application in education in Mexico, Nordic countries, and the United States. Available online for purchase or by subscription.

  • Gliessman, S. R. 2007. Agroecology: The ecology of sustainable food systems. 2d ed. Boca Raton, FL: CRC Press.

    This beginning-level book emphasizes the ecological foundations of agroecology. A companion workbook is also available.

  • Méndez, Ernesto, Christopher Bacon, and Rose Cohen, eds. 2013. Special Issue: Agroecology and the Transformation of Agri-Food Systems: Transdisciplinary and Participatory Perspectives. Agroecology and Sustainable Food Systems 37.1.

    Emphasizes linking research, practice and social transformation for justice, including an article by Gliessman (pp. 19–31) reviewing development of agroecology in Mexico in the 1970s as a form of resistance to the Green Revolution. Available online for purchase or by subscription.

  • Vandermeer, J. H. 2009. The ecology of agroecosystems. Sudbury, MA: Jones & Bartlett.

    This is an upper-division textbook, with a detailed discussion of ecological/biological principles in agroecosystems, as well as coverage of social and political issues from a social justice perspective. This book continues the high standard set by the out-of-print classic in Cox and Atkins 1979.

  • Wezel, A., S. Bellon, T. Doré, C. Francis, D. Vallod, and C. David. 2009. Agroecology as a science, a movement and a practice: A review. Agronomy for Sustainable Development 29.4: 503–515.

    DOI: 10.1051/agro/2009004

    The authors analyze the history and current use and meaning of the term “agroecology,” first used in the 1920s, in different countries (Germany, the United States, Brazil, and France). They conclude that spatial scale has evolved from plot or field scale to the farm or agroecosystem and from a focus on agronomy to a broader focus including food-system–level social and environmental issues. Available online for purchase or by subscription.

back to top

Users without a subscription are not able to see the full content on this page. Please subscribe or login.

How to Subscribe

Oxford Bibliographies Online is available by subscription and perpetual access to institutions. For more information or to contact an Oxford Sales Representative click here.