Disease Ecology
- LAST REVIEWED: 22 February 2018
- LAST MODIFIED: 22 February 2018
- DOI: 10.1093/obo/9780199830060-0128
- LAST REVIEWED: 22 February 2018
- LAST MODIFIED: 22 February 2018
- DOI: 10.1093/obo/9780199830060-0128
Introduction
Disease ecology is a rapidly developing subdiscipline of ecology concerned with how species interactions and abiotic components of the environment affect patterns and processes of disease. To date, disease ecology has focused largely on infectious disease. The scientific study of infectious disease has a long history dominated by specialists on the taxa of infectious agents (e.g., bacteriologists, virologists), mechanisms of host defense (e.g., immunologists), effects of infection on individual hosts (e.g., pathologists), effects on host populations (epidemiologists), and treatment (e.g., practicing physicians and veterinarians). Disease ecology arose as scientists increasingly recognized that the interactions between pathogen and host could be conceptually united with other interspecific interactions, such as those between predator and prey, competitors, or mutualists. At its simplest, an infectious disease consists of an interaction between one species of pathogen and one species of host. The evolution of disease ecology since the late 20th century has incorporated additional layers of complexity, including recognition that most pathogens infect multiple species of host, that hosts are infected with multiple pathogens, and that abiotic conditions (e.g., temperature, moisture) interact with biotic conditions to affect transmission and disease. As a consequence, a framework broader than the simplest host-pathogen system is often required to understand disease dynamics. Disease ecologists are interested both in the ecological causes of disease patterns (for instance, how the population density of a host influences transmission rates), and the ecological consequences of disease (for instance, how the population dynamics of a host species change as an epidemic progresses). Consequently, disease ecology today often integrates across several levels of biological organization, from molecular mechanisms of pathology and immunity; to individual-organism changes in health, survival, and reproduction; to population dynamics of hosts and pathogens; to community dynamics of hosts and pathogens; to impacts of disease on ecosystem processes; to ecosystem-level effects of climate change and landscape change on disease.
Historical Developments
The emergence of disease ecology has involved the gradual integration of several distinct lines of inquiry. One foundational development was the creation of a mathematical model of malaria shortly after the initial description of the life cycle of the malaria parasite, Plasmodium, in Anopheles mosquitoes by Sir Ronald Ross (Ross 1915). Ross’s model distinguished subpopulations of mosquitoes and humans that were susceptible from those that were infected, and it tracked the latency to infection both in vector and host. The Ross model was later generalized in models in Kermack and McKendrick 1927, which classified individuals in a host population into the following epidemiological compartments: susceptible (S), exposed (E), infectious (I), or recovered (R), and it tracked the rate at which they transitioned from one class to another. These models were tailored for specific types of diseases according to, for example, whether there is latency from exposure to infectiousness, whether hosts recover, or whether recovered hosts regain susceptibility. Tracking the numbers of individuals in each compartment and rates of transition allowed researchers to quantitatively describe and predict epidemics. Another foundational development was the incorporation of parasites into early experimental ecology. Thomas Park’s observation (Park 1948) that infection by a sporozoan parasite converted a dominant competitor into an inferior one, reversing the outcome of competition between two species of flour beetle (Tribolium spp), strongly influenced population and community ecologists. A third key development was recognition of the profound importance of infectious diseases on host populations, communities, and ecosystems. Examples include descriptions of diseases shaping human history in Diamond 1997 and Dobson and Carper 1996, a study of rinderpest shaping African wildlife communities in Plowright 1982, and Daszak, et al. 1999, which is an exploration of the association of the chytrid fungus Batrachochytrium dendrobatidis with amphibian declines worldwide. Together, these developments allowed epidemics to be understood through models and impressed upon ecologists their importance in affecting population and community dynamics.
Daszak, P., L. Berger, A. A. Cunningham, A. D. Hyatt, D. E. Green, and R. Speare. 1999. Emerging infectious diseases and amphibian population declines. Emerging Infectious Diseases 5.6: 735–748.
This paper was among the first to describe the effect of pathogen invasions, particularly the chytrid fungus Batrachochytrium dendrobatidis, on amphibian populations and the conservation consequences of emerging diseases of wildlife.
Diamond, J. 1997. Guns, germs, and steel: The fates of human societies. New York: W. W. Norton.
This influential popular book argues that infectious diseases have profoundly affected the course of human civilization. The advent of agriculture in Eurasia caused crowding and the domestication of wild ungulates, which in turn led to zoonotic transmission of animal pathogens that adapted to human hosts (including smallpox, measles, and influenza viruses). Later dispersal of these pathogens with their human hosts transformed the course of history. Revised edition published as recently as 2011.
Dobson, A. P., and E. R. Carper. 1996. Infectious diseases and human population history. BioScience 46.2: 115–126.
DOI: 10.2307/1312814
These authors describe the effects of human population density, aggregation, age structure, and other demographic variables on disease transmission, linking historical human population dynamics to the history of some major infectious diseases.
Kermack, W. O., and A. G. McKendrick. 1927. Contribution to the mathematical theory of epidemics. Proceedings of the Royal Society of London A 115.772: 700–721.
This foundational paper describes the first models of pathogen transmission in which the host population is divided into an exhaustive set of compartments indicating their infection status: susceptible, exposed, infectious, and recovered. This paper provided the basis for many subsequent models of many infectious diseases.
Park, T. 1948. Experimental studies of interspecies competition 1: Competition between populations of the flour beetles, Tribolium confusum Duval and Tribolium castaneum Herbst. Ecological Monographs 18.2: 265–307.
DOI: 10.2307/1948641
A classic paper in competition theory, this was highly influential in experimentally demonstrating how parasites could fundamentally alter the outcome of competition between closely related species. Park showed how a competitively dominant species of flour beetle became competitively subordinate when it was infected.
Plowright, W. 1982. The effects of rinderpest and rinderpest control on wildlife in Africa. Symposia of the Zoological Society of London 50:1–28.
A foundational description of the history of rinderpest introduction, via cattle, into populations of wild ungulates in sub-Saharan Africa, this paper describes the consequences of wildlife mortality for African ecosystems, and the effects of livestock vaccination programs on the dynamics of this disease.
Ross, R. 1915. Some a priori pathometric equations. British Medical Journal 1.2830: 546–547.
After having discovered the life cycle of the malaria parasite (Plasmodium) in mosquitoes in the 1890s, Sir Ronald Ross devised a simple model to describe the relationship among mosquito abundance, Plasmodium infection, and human cases of malaria. This foundational model has influenced malaria models throughout the subsequent century.
Users without a subscription are not able to see the full content on this page. Please subscribe or login.
How to Subscribe
Oxford Bibliographies Online is available by subscription and perpetual access to institutions. For more information or to contact an Oxford Sales Representative click here.
Article
- Abundance/Biomass Comparison Method
- Accounting for Ecological Capital
- Adaptive Radiation
- Agroecology
- Allelopathy
- Allocation of Reproductive Resources in Plants
- Animals, Functional Morphology of
- Animals, Reproductive Allocation in
- Animals, Thermoregulation in
- Antarctic Environments and Ecology
- Anthropocentrism
- Applied Ecology
- Approaches and Issues in Historical Ecology
- Aquatic Conservation
- Aquatic Nutrient Cycling
- Archaea, Ecology of
- Assembly Models
- Autecology
- Bacterial Diversity in Freshwater
- Benthic Ecology
- Biodiversity and Ecosystem Functioning
- Biodiversity, Dimensionality of
- Biodiversity, Marine
- Biodiversity Patterns in Agricultural Systms
- Biofuels
- Biogeochemistry
- Biological Chaos and Complex Dynamics
- Biological Rhythms
- Biome, Alpine
- Biome, Boreal
- Biome, Desert
- Biome, Grassland
- Biome, Savanna
- Biome, Tundra
- Biomes, African
- Biomes, East Asian
- Biomes, Mountain
- Biomes, North American
- Biomes, South Asian
- Biophilia
- Braun, E. Lucy
- Bryophyte Ecology
- Buell-Small Succession Study (New Jersey)
- Butterfly Ecology
- Carson, Rachel
- Chemical Ecology
- Classification Analysis
- Coastal Dune Habitats
- Coevolution
- Communicating Ecology
- Communities and Ecosystems, Indirect Effects in
- Communities, Top-Down and Bottom-Up Regulation of
- Community Concept, The
- Community Ecology
- Community Genetics
- Community Phenology
- Competition and Coexistence in Animal Communities
- Competition in Plant Communities
- Complexity Theory
- Conservation Biology
- Conservation Genetics
- Coral Reefs
- Darwin, Charles
- Dead Wood in Forest Ecosystems
- Decomposition
- De-Glaciation, Ecology of
- Dendroecology
- Disease Ecology
- Dispersal
- Drought as a Disturbance in Forests
- Early Explorers, The
- Earth’s Climate, The
- Eco-Evolutionary Dynamics
- Ecological Dynamics in Fragmented Landscapes
- Ecological Education
- Ecological Engineering
- Ecological Forecasting
- Ecological Informatics
- Ecological Relevance of Speciation
- Ecology, Introductory Sources in
- Ecology, Microbial (Community)
- Ecology of Emerging Zoonotic Viruses
- Ecology of the Atlantic Forest
- Ecology, Stochastic Processes in
- Ecosystem Ecology
- Ecosystem Engineers
- Ecosystem Multifunctionality
- Ecosystem Services
- Ecosystem Services, Conservation of
- Ecotourism
- Elton, Charles
- Endophytes, Fungal
- Energy Flow
- Environmental Anthropology
- Environmental Justice
- Environments, Extreme
- Ethics, Ecological
- European Natural History Tradition
- Evolutionarily Stable Strategies
- Facilitation and the Organization of Communities
- Fern and Lycophyte Ecology
- Fire Ecology
- Fishes, Climate Change Effects on
- Flood Ecology
- Food Webs
- Foraging Behavior, Implications of
- Foraging, Optimal
- Forests, Temperate Coniferous
- Forests, Temperate Deciduous
- Freshwater Invertebrate Ecology
- Genetic Considerations in Plant Ecological Restoration
- Genomics, Ecological
- Geoecology
- Geographic Range
- Gleason, Henry
- Grazer Ecology
- Greig-Smith, Peter
- Gymnosperm Ecology
- Habitat Selection
- Harper, John L.
- Harvesting Alternative Water Resources (US West)
- Heavy Metal Tolerance
- Heterogeneity
- Himalaya, Ecology of the
- Host-Parasitoid Interactions
- Human Ecology
- Human Ecology of the Andes
- Human-Wildlife Conflict and Coexistence
- Hutchinson, G. Evelyn
- Indigenous Ecologies
- Industrial Ecology
- Insect Ecology, Terrestrial
- Invasive Species
- Island Biogeography Theory
- Island Biology
- Keystone Species
- Kin Selection
- Landscape Dynamics
- Landscape Ecology
- Laws, Ecological
- Legume-Rhizobium Symbiosis, The
- Leopold, Aldo
- Lichen Ecology
- Life History
- Limnology
- Literature, Ecology and
- MacArthur, Robert H.
- Mangrove Zone Ecology
- Marine Fisheries Management
- Marine Subsidies
- Mass Effects
- Mathematical Ecology
- Mating Systems
- Maximum Sustainable Yield
- Metabolic Scaling Theory
- Metacommunity Dynamics
- Metapopulations and Spatial Population Processes
- Microclimate Ecology
- Mimicry
- Movement Ecology, Modeling and Data Analysis in
- Multiple Stable States and Catastrophic Shifts in Ecosyste...
- Mutualisms and Symbioses
- Mycorrhizal Ecology
- Natural History Tradition, The
- Networks, Ecological
- Niche Versus Neutral Models of Community Organization
- Niches
- Nutrient Foraging in Plants
- Ocean Sprawl
- Oceanography, Microbial
- Odum, Eugene and Howard
- Old Fields
- Ordination Analysis
- Organic Agriculture, Ecology of
- Paleoecology
- Paleolimnology
- Parental Care, Evolution of
- Pastures and Pastoralism
- Patch Dynamics
- Patrick, Ruth
- Peatlands
- Phenotypic Plasticity
- Phenotypic Selection
- Philosophy, Ecological
- Phylogenetics and Comparative Methods
- Physics, Ecology and
- Physiological Ecology of Nutrient Acquisition in Animals
- Physiological Ecology of Photosynthesis
- Physiological Ecology of Water Balance in Terrestrial Anim...
- Physiological Ecology of Water Balance in Terrestrial Plan...
- Plant Blindness
- Plant Disease Epidemiology
- Plant Ecological Responses to Extreme Climatic Events
- Plant-Insect Interactions
- Polar Regions
- Pollination Ecology
- Population Dynamics, Density-Dependence and Single-Species
- Population Dynamics, Methods in
- Population Ecology, Animal
- Population Ecology, Plant
- Population Fluctuations and Cycles
- Population Genetics
- Population Viability Analysis
- Populations and Communities, Dynamics of Age- and Stage-St...
- Predation and Community Organization
- Predation, Sublethal
- Predator-Prey Interactions
- Radioecology
- Reductionism Versus Holism
- Religion and Ecology
- Remote Sensing
- Restoration Ecology
- Rewilding
- Ricketts, Edward Flanders Robb
- Sclerochronology
- Secondary Production
- Seed Ecology
- Senescence
- Serpentine Soils
- Shelford, Victor
- Simulation Modeling
- Socioecology
- Soil Biogeochemistry
- Soil Ecology
- Spatial Pattern Analysis
- Spatial Patterns of Species Biodiversity in Terrestrial En...
- Spatial Scale and Biodiversity
- Species Distribution Modeling
- Species Extinctions
- Species Responses to Climate Change
- Species-Area Relationships
- Stability and Ecosystem Resilience, A Below-Ground Perspec...
- Stoichiometry, Ecological
- Stream Ecology
- Succession
- Sustainable Development
- Systematic Conservation Planning
- Systems Ecology
- Tansley, Sir Arthur
- Terrestrial Nitrogen Cycle
- Terrestrial Resource Limitation
- Territoriality
- Theory and Practice of Biological Control
- Thermal Ecology of Animals
- Tragedy of the Commons
- Transient Dynamics
- Trophic Levels
- Tropical Humid Forest Biome
- Urban Ecology
- Urban Forest Ecology
- Vegetation Classification
- Vegetation Dynamics, Remote Sensing of
- Vegetation Mapping
- Vicariance Biogeography
- Weed Ecology
- Wetland Ecology
- Whittaker, Robert H.
- Wildlife Ecology