Epigenetics and Behavior
- LAST REVIEWED: 29 April 2015
- LAST MODIFIED: 29 April 2015
- DOI: 10.1093/obo/9780199941728-0063
- LAST REVIEWED: 29 April 2015
- LAST MODIFIED: 29 April 2015
- DOI: 10.1093/obo/9780199941728-0063
Introduction
Behavioral epigenetics is part of the thriving field of epigenetics, which describes the study of developmental processes that lead to persistent changes in the states of organisms, their components, and their lineages. Such developmental, context-sensitive changes are mediated by epigenetic mechanisms that establish and maintain the changes in patterns of gene expression and cellular structures that occur during ontogeny in both nondividing cells, such as most mature neurons, and dividing cells such as stem cells. When information is vertically transmitted to cells during cell division, or horizontally between cells through migrating reproducing molecules (like small RNAs), and when variations in the transmitted information are not determined by variations in DNA sequence (i.e., the same DNA sequence has more than one cell-heritable epigenetic state), epigenetic inheritance is said to occur. Behavioral epigenetics investigates the role of behavior in the shaping of developmental epigenetic states and the reciprocal role of epigenetic factors and mechanisms in the shaping of the behavior of human and nonhuman animals, at the short-, middle-, and long-term (ontogenetic, ecological, and evolutionary) time scales. The focus is on the molecular-epigenetic study of the interactions between environmental factors, such as ecological factors and habitual activities such as lifestyles and learning, with genetic variation and the neurobiological and physiological mechanisms that mediate between the regulation of gene expression and behavior. This range of epigenetic processes therefore includes, but is not limited to, studies involving epigenetic inheritance and the direct and indirect evolutionary effects of epigenetic developmental mechanisms. The neural-behavioral aspects that occur during ontogeny through the mediation of epigenetic mechanisms are central to behavioral epigenetics and are the main focus of neural epigenetics.
Epigenetic Mechanisms
The major types of epigenetic inheritance systems that have been recognized are (i) Self-sustaining loops involving, for example, positive regulation of a gene’s activity by its products, which leads to the maintenance of a pattern and activity and that, when transmitted during cell division, cause the same state of gene activity to be reconstructed in daughter cells. (ii) Structural templating, in which three-dimensional cellular structures act as templates for the production of similar structures, which then become components of daughter cells. The structural templating involved in the propagation of prions is an example of such a mechanism. (iii) Chromatin-marking, in which patterns of DNA modifications such as attached methyl group (CH3) and modifications in the histone proteins associated with DNA are reconstructed during cell division. Chromatin marks can be dynamically maintained over a long time. In dividing cells, some hitchhike on DNA replication and segregate, with parental marks nucleating the reconstruction of similar marks on daughter DNA molecules. The different chromatin marks are functionally and mechanistically related and often work synergistically. (iv) RNA-mediated systems, in which small transmissible RNA molecules regulate translation and transcription through interactions with mRNA or DNA to which they are complementary. As described by Jablonka and Lamb 2014, the long-term developmental maintenance of states that are regulated by small RNAs can occur through several different mechanisms. Small ncRNAs can migrate from cell to cell, so silencing can spread horizontally within an organism (Hoy and Buck 2012). These mechanisms operate and interact in all cells, including the nervous system, and have been shown to be central to the nervous system’s development and functions.
Hoy, A. M., and A. H. Buck. 2012. Extracellular small RNAs: What, where, why? Biochemical Society Transactions 40:886–890.
DOI: 10.1042/BST20120019
This paper provides an overview of the properties of extracellular miRNAs in relation to their capacity as biomarkers, stability against degradation, and mediators of cell–cell communication.
Jablonka, E., and M. Lamb. 2014. Evolution in four dimensions: Genetic, epigenetic, behavioral, and symbolic variation in the history of life. Cambridge, MA: MIT.
An accessible monograph, discussing the many aspects of epigenetic inheritance and highlighting its evolutionary implications. Behavioral epigenetics is discussed at length in chapter 11 of the revised edition. Originally published in 2005.
Users without a subscription are not able to see the full content on this page. Please subscribe or login.
How to Subscribe
Oxford Bibliographies Online is available by subscription and perpetual access to institutions. For more information or to contact an Oxford Sales Representative click here.
Article
- Adaptation
- Adaptive Radiation
- Altruism
- Amniotes, Diversification of
- Ancient DNA
- Behavioral Ecology
- Canalization and Robustness
- Cancer, Evolutionary Processes in
- Character Displacement
- Coevolution
- Cognition, Evolution of
- Constraints, Evolutionary
- Contemporary Evolution
- Convergent Evolution
- Cooperation and Conflict: Microbes to Humans
- Cooperative Breeding in Insects and Vertebrates
- Creationism
- Cryptic Female Choice
- Darwin, Charles
- Darwinism
- Disease Virulence, Evolution of
- Diversification, Diversity-Dependent
- Ecological Speciation
- Endosymbiosis
- Epigenetics and Behavior
- Epistasis and Evolution
- Eusocial Insects as a Model for Understanding Altruism, Co...
- Eusociality
- Evidence of Evolution, The
- Evolution
- Evolution and Development: Genes and Mutations Underlying ...
- Evolution and Development of Individual Behavioral Variati...
- Evolution, Cultural
- Evolution of Animal Mating Systems
- Evolution of Antibiotic Resistance
- Evolution of New Genes
- Evolution of Plant Mating Systems
- Evolution of Specialization
- Evolutionary Biology of Aging
- Evolutionary Biomechanics
- Evolutionary Computation
- Evolutionary Developmental Biology
- Evolutionary Ecology of Communities
- Experimental Evolution
- Extinction
- Field Studies of Natural Selection
- Fossils
- Founder Effect Speciation
- Frequency-Dependent Selection
- Fungi, Evolution of
- Gene Duplication
- Gene Expression, Evolution of
- Gene Flow
- Genetics, Ecological
- Genome Evolution
- Geographic Variation
- Gradualism
- Group Selection
- Heterochrony
- Heterozygosity
- History of Evolutionary Thought, 1860–1925
- History of Evolutionary Thought before Darwin
- History of Evolutionary Thought Since 1930
- Human Behavioral Ecology
- Human Evolution
- Hybrid Speciation
- Hybrid Zones
- Hybridization and Diversification
- Identifying the Genomic Basis Underlying Phenotypic Variat...
- Inbreeding and Inbreeding Depression
- Inclusive Fitness
- Innovation, Evolutionary
- Islands as Evolutionary Laboratories
- Kin Selection
- Land Plants, Evolution of
- Landscape Genetics
- Landscapes, Adaptive
- Language, Evolution of
- Latitudinal Diversity Gradient, The
- Macroevolution
- Macroevolution, Clade-Level Interactions and
- Macroevolutionary Rates
- Male-Male Competition
- Mass Extinction
- Mate Choice
- Maternal Effects
- Mating Tactics and Strategies
- Medicine, Evolutionary
- Meiotic Drive
- Mimicry
- Modern Synthesis, The
- Molecular Clocks
- Molecular Phylogenetics
- Mutation Rate and Spectrum
- Mutualism, Evolution of
- Natural Selection in Human Populations
- Natural Selection in the Genome, Detecting
- Neutral Theory
- New Zealand, Evolutionary Biogeography of
- Niche Construction
- Niche Evolution
- Non-Human Animals, Cultural Evolution in
- Origin and Early Evolution of Animals
- Origin of Amniotes and the Amniotic Egg
- Origin of Eukaryotes
- Origin of Life, The
- Paradox of Sex
- Parallel Speciation
- Parental Care, Evolution of
- Parthenogenesis
- Personality Differences, Evolution of
- Pest Management, Evolution and
- Phenotypic Plasticity
- Phylogenetic Comparative Methods and Tests of Macroevoluti...
- Phylogenetic Trees, Interpretation of
- Phylogeography
- Polyploid Speciation
- Population Genetics
- Population Structure
- Post-Copulatory Sexual Selection
- Psychology, Evolutionary
- Punctuated Equilibria
- Quantitative Genetic Variation and Heritability
- Reaction Norms, Evolution of
- Reinforcement
- Reproductive Proteins, Evolution of
- Selection, Directional
- Selection, Disruptive
- Selection Gradients
- Selection, Natural
- Selection, Sexual
- Selective Sweeps
- Selfish Genes
- Sequential Speciation and Cascading Divergence
- Sexual Conflict
- Sexual Selection and Speciation
- Sexual Size Dimorphism
- Speciation
- Speciation Continuum
- Speciation Genetics and Genomics
- Speciation, Geography of
- Speciation, Sympatric
- Species Concepts
- Species Delimitation
- Sperm Competition
- Stasis
- Systems Biology
- Taxonomy and Classification
- Tetrapod Evolution
- The Philosophy of Evolutionary Biology
- Theory, Coalescent
- Trends, Evolutionary
- Vertebrates, Origin of
- Wallace, Alfred Russel