In This Article Expand or collapse the "in this article" section Macroevolution

  • Introduction
  • General Overviews
  • Journals

Evolutionary Biology Macroevolution
by
Pasquale Raia
  • LAST REVIEWED: 26 May 2016
  • LAST MODIFIED: 26 May 2016
  • DOI: 10.1093/obo/9780199941728-0074

Introduction

Macroevolution is evolution above the level of species. As such, macroevolution applies to the study of the birth, diversification, and death of clades (groups of species sharing a single common ancestor). Macroevolution also focuses on phenotypic evolutionary trends over geological time, such as the increase in structural complexity and body size, the transition between major body plans (Ger. baupläne), and how clades occupy (and, to some extent, create) the phenotypic space. Although the proof, occurrence, and mechanisms of evolution at the level of populations, or even genes, are founded on very solid evidence, the substantiation for macroevolution stands on thinner ice. It is unquestionable that the selection of genetic variants originated through mutations provides evolution at the level of populations and species. Yet, whether and how this mechanism applies to grand-scale evolutionary transitions (such as the birth of clades) is highly contentious. The extension of microevolutionary processes to the macroevolutionary scale has consequently been a major issue in biology and the very cause of disagreement between those who support and those who deny the existence of macroevolution. Proof for such continuity is supported in the context of “evo-devo,” the evolutionary study of developmental processes. Recent accounts also challenge the conventional view that mutation and natural selection are the sole sources of phenotypic variation through microevolution. It has been demonstrated that most genetic variance is not adaptive (in the sense of affecting organisms’ fitness) and that environmental change, in addition to mutation, may trigger phenotypic novelties by changing gene expression, not just by selecting some phenotypic variants at the expense of others. Eventually, the continuity between micro- and macroevolutionary processes is not even necessary for macroevolution to apply. Emergent properties such as the selection of species (rather than phenotypes) and the determinants of the tempo of phenotypic evolution (whether it is a continuous or pulsed process) properly belong to macroevolution only. All of these findings suggest that evolution above the species level is a real, viable, and tremendously important process in evolutionary biology.

General Overviews

Macroevolution has always been a hot topic in evolutionary biology. A number of excellent overviews exist on the subject matter, including books, review articles published in scientific journals, and even publications dedicated to the general, nontechnical, audience. Understanding macroevolution requires integrating knowledge from different fields, including paleontology, macroecology, and genetics. Simpson 1953, a seminal book, is a must-read. Stanley 1979 and Gould 2002 are similarly important, provocative, and highly informative readings. A number of volumes are dedicated to dissecting the nature of the interaction between genetic and phenotypic evolution, including Levinton 2001, which stands out for clarity and style. Finally, recent edited volumes of great relevance are Bell, et al. 2010 and Serrelli and Gontier 2015.

  • Bell, M. A., D. J. Futuyma, W. F. Eanes, and J. S. Levinton, eds. 2010. Evolution since Darwin: The first 150 years. Proceedings of a workshop held Nov. 4–7, 2009 at Stony Brook University, to mark the bicentennial anniversary of Darwin’s birth and the sesquicentennial of the publication of On the Origin of Species. Sunderland, MA: Sinauer.

    A collection of contributions on cutting-edge knowledge about macroevolution and how the evolutionary thinking has changed since Darwin’s first step.

  • Gould, Stephen Jay. 2002. The structure of evolutionary theory. Cambridge, MA: Harvard Univ. Press.

    The not-so-synthetic synthesis of a lifelong effort to present evolution under the novel light of punctuated equilibria.

  • Levinton, Jeffrey S. 2001. Genetics, paleontology, and macroevolution. Cambridge, UK: Cambridge Univ. Press.

    DOI: 10.1017/CBO9780511612961

    A beautifully written guide to the integration among different fields and disciplines interested in evolution.

  • Serrelli, Emanuele, and Nathalie Gontier, eds. 2015. Macroevolution. Cham, Switzerland: Springer International.

    This up-to-date collection of contributions on macroevolution edited by Serrelli and Gontier is a very welcome reference for learning about the state of the art of macroevolutionary studies.

  • Simpson, George Gaylord. 1953. The major features of evolution. New York: Columbia Univ. Press.

    Few books have inspired as much evolutionary research and thinking as much as Simpson’s magnum opus. A must-read for those who want to learn how paleontology contributed to modern evolutionary biology.

  • Stanley, Steven M. 1979. Macroevolution, pattern and process. San Francisco: W. H. Freeman.

    Stanley’s Macroevolution follows Simpson 1953 with brilliant clarity and innovation on what paleontologists see in terms of evolution in the fossil record.

back to top

Users without a subscription are not able to see the full content on this page. Please subscribe or login.

How to Subscribe

Oxford Bibliographies Online is available by subscription and perpetual access to institutions. For more information or to contact an Oxford Sales Representative click here.

Article

Up

Down