Contemporary Evolution
- LAST REVIEWED: 12 May 2023
- LAST MODIFIED: 26 August 2020
- DOI: 10.1093/obo/9780199941728-0126
- LAST REVIEWED: 12 May 2023
- LAST MODIFIED: 26 August 2020
- DOI: 10.1093/obo/9780199941728-0126
Introduction
The term “contemporary evolution” is typically used in reference to ongoing or recent genetically based (heritable) phenotypic changes taking place in wild populations. In some cases, the genetic and genomic basis for these phenotypic changes can be identified and documented. Contemporary evolution is most apparent when organisms experience dramatic environmental changes, especially due to human causes such as commercial fisheries, climate change, pollution, or urbanization. Contemporary evolution then influences a number of evolutionary and ecological processes, such as ecological speciation, population dynamics (including evolutionary rescue), community structure, and ecosystem function. As a result, contemporary evolution has important applications in conservation biology, environmental sciences, and sustainability science.
General Overviews
The first conceptual review of contemporary evolution, which also coined the term, was Hendry and Kinnison 1999. That paper also advocated and advanced the use evolutionary rate metrics to analyze and compare rates of phenotypic change. Contemporary evolution was later alternatively defined as evolution occurring over ecological time scales in Hairston, et al. 2005, which also argued for the importance of ongoing evolution in shaping ecological processes. Hendry 2017 provides a general overview of the various factors shaping contemporary evolution and the ecological consequences of that evolution. Although the study of contemporary evolution emphasizes changes that take place in wild populations, studies of selection in laboratory or other controlled populations have taught us much about how evolution responds to changes in selection, as reviewed in Kassen 2014.
Hairston, N. G., Jr., S. P. Ellner, M. A. Geber, T. Yoshida, and J. A. Fox. 2005. Rapid evolution and the convergence of ecological and evolutionary time. Ecology Letters 8:1114–1127.
One of the first papers to emphasize the importance of contemporary evolution for ecological change, along with a means for quantifying the relative importance of evolution to that ecological change.
Hendry, A. P. 2017. Eco-evolutionary dynamics. Princeton, NJ: Princeton Univ. Press.
Provides a detailed conceptual and empirical integration of contemporary evolution into evolutionary ecology and eco-evolutionary dynamics.
Hendry, A. P., and M. T. Kinnison. 1999. The pace of modern life: Measuring rates of contemporary microevolution. Evolution 53:1637–1653.
The first assessment of methods for quantifying and comparing rates of phenotypic change in contemporary populations, with a first compilation of estimates of observed rates of change in existing empirical studies.
Kassen, R. 2014. Experimental evolution and the nature of biodiversity. Gordonsville, VA: Macmillan Learning.
Reviews studies of experimental evolution conducted in the laboratory.
Users without a subscription are not able to see the full content on this page. Please subscribe or login.
How to Subscribe
Oxford Bibliographies Online is available by subscription and perpetual access to institutions. For more information or to contact an Oxford Sales Representative click here.
Article
- Adaptation
- Adaptive Radiation
- Altruism
- Amniotes, Diversification of
- Ancient DNA
- Bacterial Species Concepts
- Behavioral Ecology
- Canalization and Robustness
- Cancer, Evolutionary Processes in
- Character Displacement
- Coevolution
- Cognition, Evolution of
- Constraints, Evolutionary
- Contemporary Evolution
- Convergent Evolution
- Cooperation and Conflict: Microbes to Humans
- Cooperative Breeding in Insects and Vertebrates
- Creationism
- Cryptic Female Choice
- Darwin, Charles
- Darwinism
- Disease Virulence, Evolution of
- Diversification, Diversity-Dependent
- Ecological Speciation
- Endosymbiosis
- Epigenetics and Behavior
- Epistasis and Evolution
- Eusocial Insects as a Model for Understanding Altruism, Co...
- Eusociality
- Evidence of Evolution, The
- Evolution
- Evolution and Development: Genes and Mutations Underlying ...
- Evolution and Development of Individual Behavioral Variati...
- Evolution, Cultural
- Evolution of Animal Mating Systems
- Evolution of Antibiotic Resistance
- Evolution of New Genes
- Evolution of Plant Mating Systems
- Evolution of Specialization
- Evolutionary Biology of Aging
- Evolutionary Biomechanics
- Evolutionary Computation
- Evolutionary Developmental Biology
- Evolutionary Ecology of Communities
- Experimental Evolution
- Extinction
- Field Studies of Natural Selection
- Fossils
- Founder Effect Speciation
- Frequency-Dependent Selection
- Fungi, Evolution of
- Gene Duplication
- Gene Expression, Evolution of
- Gene Flow
- Genetics, Ecological
- Genome Evolution
- Geographic Variation
- Gradualism
- Group Selection
- Heterochrony
- Heterozygosity
- History of Evolutionary Thought, 1860–1925
- History of Evolutionary Thought before Darwin
- History of Evolutionary Thought Since 1930
- Human Behavioral Ecology
- Human Evolution
- Hybrid Speciation
- Hybrid Zones
- Hybridization and Diversification
- Identifying the Genomic Basis Underlying Phenotypic Variat...
- Inbreeding and Inbreeding Depression
- Inclusive Fitness
- Innovation, Evolutionary
- Islands as Evolutionary Laboratories
- Kin Selection
- Land Plants, Evolution of
- Landscape Genetics
- Landscapes, Adaptive
- Language, Evolution of
- Latitudinal Diversity Gradient, The
- Macroevolution
- Macroevolution, Clade-Level Interactions and
- Macroevolutionary Rates
- Male-Male Competition
- Mass Extinction
- Mate Choice
- Maternal Effects
- Mating Tactics and Strategies
- Medicine, Evolutionary
- Meiotic Drive
- Mimicry
- Modern Synthesis, The
- Molecular Clocks
- Molecular Phylogenetics
- Mutation Rate and Spectrum
- Mutualism, Evolution of
- Natural Selection in Human Populations
- Natural Selection in the Genome, Detecting
- Neutral Theory
- New Zealand, Evolutionary Biogeography of
- Niche Construction
- Niche Evolution
- Non-Human Animals, Cultural Evolution in
- Origin and Early Evolution of Animals
- Origin of Amniotes and the Amniotic Egg
- Origin of Eukaryotes
- Origin of Life, The
- Paradox of Sex
- Parallel Speciation
- Parental Care, Evolution of
- Parthenogenesis
- Personality Differences, Evolution of
- Pest Management, Evolution and
- Phenotypic Plasticity
- Phylogenetic Comparative Methods and Tests of Macroevoluti...
- Phylogenetic Trees, Interpretation of
- Phylogeography
- Polyploid Speciation
- Population Genetics
- Population Structure
- Post-Copulatory Sexual Selection
- Psychology, Evolutionary
- Punctuated Equilibria
- Quantitative Genetic Variation and Heritability
- Reaction Norms, Evolution of
- Reinforcement
- Reproductive Proteins, Evolution of
- Selection, Directional
- Selection, Disruptive
- Selection Gradients
- Selection, Natural
- Selection, Sexual
- Selective Sweeps
- Selfish Genes
- Sequential Speciation and Cascading Divergence
- Sexual Conflict
- Sexual Selection and Speciation
- Sexual Size Dimorphism
- Speciation
- Speciation Continuum
- Speciation Genetics and Genomics
- Speciation, Geography of
- Speciation, Sympatric
- Species Concepts
- Species Delimitation
- Sperm Competition
- Stasis
- Systems Biology
- Taxonomy and Classification
- Tetrapod Evolution
- The Philosophy of Evolutionary Biology
- Theory, Coalescent
- Trends, Evolutionary
- Vertebrates, Origin of
- Wallace, Alfred Russel